Calculating effective annual rates

From ACT Wiki
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Effective annual rate (EAR) is a conventional measure which expresses the returns on different instruments on a comparable basis.

The EAR basis of comparison is the equivalent rate of interest paid and compounded annually, which would give the same all-in rate of return as the instrument under review.

For this reason, 'EAR' is sometimes expressed as equivalent annual rate.


Conversion formulae

Nominal annual rate to periodic rate

r = R / n


Where:

r = periodic interest rate or yield

R = nominal annual rate

n = number of times the period fits into a conventional year (for example, 360 or 365 days)


Periodic interest rate or yield to Effective annual rate

EAR = (1 + r)n - 1


Where:

EAR = effective annual rate or yield

r = periodic interest rate or yield, as before

n = number of times the period fits into a calendar year


EAR from semi-annual quote

We can calculate EAR from a semi-annual (half-year) quote.


Example 1: EAR from semi-annual quote

GBP semi-annual interest is conventionally quoted on a simple interest basis for half-years, using half-years to calculate interest for each period of six months, rather than an exact daycount.

So GBP semi-annual interest quoted at R = 5.00% means:

(i)

Interest of:

r = R / n

r = 5.00 / 2

r = 2.50% is paid per six months.


(ii)

The equivalent effective annual rate is:


EAR = (1 + r)n - 1

EAR = 1.0252 - 1

EAR = 5.0625%.


EAR from USD overnight quote

We can calculate EAR from a USD overnight quote which has a 360-day year.


Example 2: EAR from USD overnight quote

USD overnight interest is conventionally quoted on a simple interest basis for a 360-day year.

So USD overnight interest quoted at R = 5.04% means:

(i)

Interest of:

r = R / n

r = 5.04% / 360

r = 0.014% is paid per day.


(ii)

The equivalent effective annual rate is:


EAR = (1 + r)n - 1

EAR = 1.00014365 - 1

EAR = 5.2424%.


See also