Compounding effect

From ACT Wiki
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

1. Financial maths.

In maths, compounding effects are the additional growth or additional interest, resulting from the compounding effects of - for example - interest on interest.


Example 1: Compounding for two years at 5% per annum

Interest quoted at 5% per annum, compounded annually, for two years maturity, means that the interest accumulated after two years is:

= (1.05 x 1.05) - 1

= 10.25% for the two year period.


Without the additional interest on interest, the total interest would have been simply

5% per annum x 2 years

= 10.00%.


So the compounding effect of interest on interest here

= 10.25% - 10.00%

= 0.25% over the two year period (= 5% x 5%).


When both the number of periods and the rate of growth/interest are low, compounding effects are relatively small.

When either the number of periods or the rate of growth/interest - or both - are greater, compounding effects quickly become very much larger.


Example 2: Compounding for two years at 50% per annum

Sales are growing at 50% per annum, for two years.

This means that the total growth after two years is:

= (1.50 x 1.50) - 1

= 125% for the two year period.


Without the additional growth on growth, the total growth would have been simply

50% per annum x 2 years

= 100%.


So the compounding effect of growth on growth here

= 125% - 100%

= 25% over the two year period (= 50% x 50%).


Example 3: Compounding for 20 years at 5% per annum

Interest quoted at 5% per annum, compounded annually, for 20 years maturity, means that the interest accumulated after 20 years is:

= 1.0520 - 1

= 165% for the 20-year period.


Without the additional interest on interest, the total interest would have been simply

5% per annum x 20 years

= 100%.


So the compounding effect of interest on interest here

= 165% - 100%

= 65% over the 20-year period.


{850}px


2. Risk management.

Additional adverse consequences which occur when multiple adverse conditions arise at the same time.


Related global risks with compounding effects
"[Global] risks can also interact with each other to form a 'polycrisis' – a cluster of related global risks with compounding effects, such that the overall impact exceeds the sum of each part."
World Economic Forum (WEF) - Global Risks Report 2023 - p57.


See also